♣特色と構成♣

①本書は、中学1・2年から3年の後半までの内容を含む発展学習を目的とした、レベルの高いテキストです。各単元では、公立高校入試レベルの問題から始めて、私立高校入試でよく出題される問題まで、密度の濃い学習をします。上位高校受験準備のスタートとして十分内容を備えたテキストです。

2各講座の構成

〈練習問題〉…… 公立高校入試での標準レベルの問題を解きながら、各単元の重要事項を確認します。

〈発展問題〉…… 私立高校入試での必修レベルの問題を解きながら、数学の応用力を身につけ、発展学習の内容を理解します。

〈**挑戦問題**〉…… ハイレベルの問題を体験し、解法のポイントを学習します。

もくじ

, vita, setta, setta	
1	数と式の計算 2
2	方程式とその利用6
3	2 次方程式とその利用 10
4	1 次関数
5	平面図形・空間図形 20
<u>6</u>	三角形と四角形26
7	円周角とその利用30
8	確率34
9	2 次関数38
10	相似(1)
11	相似(2)48
12	三平方の定理とその利用 52

• 2 次方程式とその利用

練習問題

- [因数分解による解き方] 次の2次方程式を解きなさい。
- (1) (2x 1) (3x + 2) = 0
- $(2) \quad \mathbf{x}^2 5\mathbf{x} = 0$
- $(3) \quad x^2 3x + 2 = 0$
- $(4) \quad x^2 4x 45 = 0$

(5) $x^2 - 9 = 0$

- (6) $x^2 8x + 16 = 0$
- 2 [平方根の考え方による解き方] 次の2次方程式を解きなさい。
- (1) $5x^2 = 80$

 $(2) \quad 4x^2 - 9 = 0$

- (3) $(x-3)^2=5$
- $(4) (x+2)^2 4 = 0$
- **3** [平方完成による解き方] 次の2次方程式を解きなさい。
- $(1) \quad x^2 + 6x 4 = 0$
- $(2) \quad x^2 8x + 4 = 0$
- 4 [解の公式による解き方] 次の2次方程式を解きなさい。

 - (1) $x^2 3x 3 = 0$ (2) $3x^2 5x 1 = 0$
 - (3) $x^2 + 10x + 20 = 0$ (4) $2x^2 7x + 6 = 0$

ℯポイントゥ

1 右辺を 0 にし、左辺を 因数分解して、次のことが らを利用する。

 $_{\mathsf{\Gamma}}A \times B = 0$ ならば, A = 0 または B = 02つの1次方程式にするこ とができる。

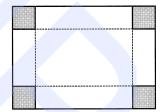
- (6) 解が1つしかないことも ある。
- $2 \quad X^2 = a \quad \rightarrow \quad X = \pm \sqrt{a}$ (a > 0)

- **3** (1) $x^2 + \underline{6x} = 4$ 半分の2乗 $x^2 + 6x + 3^2 = 4 + 3^2$ $(x + 3)^2 = 13$
- 4 解の公式

 $ax^2 + bx + c = 0$ の解は、 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{}$

(3)(4) 解はできるだけ簡単 な形にして答える。

- (1) 2次方程式 $x^2 + ax 91 = 0$ の解の 1 つが x = 7 であるとき、定数 a と残りの解を求めよ。
- (2) 2次方程式 $x^2 2x 1 = 0$ の 2 つの解のうち、小さい方の解を a とするとき、 $a^2 3a 1$ の値を求めよ。
- **6** [数についての問題] 連続する2つの正の奇数の平方の和が130になるとき,この2つの奇数を求めなさい。
- 7 [図形についての問題] 次の問いに答えなさい。
 - (1) 長さ $40 \, \text{cm}$ のひもで長方形をつくり、面積を $84 \, \text{cm}^2$ にしたい。縦、横 の長さをそれぞれ何 $\, \text{cm}$ にすればよいか。
 - (2) 横が縦より 3 cm 長い長方形の紙がある。この紙の 4 すみから 1 辺 4 cm の正方形を切り取り, 直方体の容器を作ったら, 容積が 720 cm³になった。もとの紙の縦の長さを求めよ。



- **8** [割合についての問題] 原価 2000 円の商品に原価のx割の利益を見込んで定価をつけたが、売れなかったので定価のx割引きで売ったところ、180 円の損失になった。このとき、x の値を求めなさい。
- **9** [**その他の問題**] 地上からボールを毎秒 $40\,\mathrm{m}$ の速さで投げ上げると,t 秒後には,ボールは地上からおよそ $(40\,t\,-5\,t^2)\,\mathrm{m}$ の高さにあるという。次の問いに答えなさい。
 - (1) ボールが再び地上に戻ってくるのは、投げ上げてから何秒後か。
 - (2) ボールが地上から 60 m の高さになるのは、投げ上げてから何秒後と何 秒後か。

- **5** 方程式の解が与えられているとき
 - →解を方程式に代入する。
- (2) a について、

 $a^2-2a-1=0$ が成り立
つ。

- **6** 連続する 2 つの奇数は、2x-1, 2x+1(x は整数) と表すことができる。
- 7
- (1) 縦の長さをxcm とすると、横の長さは(20-x)cm
- (2) もとの紙の縦の長さ,ま たは直方体の底面の縦の長 さをxcmとする。xの範囲に注意。

- 8 1割…0.1
- x 割増し $\rightarrow \times \left(1 + \frac{x}{10}\right)$
- x 割引き $\rightarrow \times \left(1 \frac{x}{10}\right)$
- 9
- (1) 地上…高さ0m

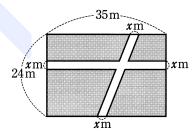
発展問題

- 10 次の方程式を解きなさい。
 - (1) $(2x + 1)(x 2) = (x 1)^2$

〈近大附〉 (2)
$$(2x-3)^2 + 2(2x-3) - 15 = 0$$

〈市川〉

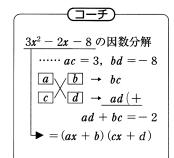
- **11** 2次方程式 $x^2 + bx + c = 0$ の 2 つの解を -3, 2 とするとき, b, c の値を求めなさい。 〈近大附〉
- **12** 2 次方程式 $2x^2 4x 1 = 0$ の 2 つの解を a, b(ただし a > b)とするとき, $a^2 + b^2 2a 2b$ の 値を求めなさい。
- **13** ある正の数 a に、2 をたしてから2乗して3を加えるところを、2 をたしてから2倍して3を加えたため、求める数より15 小さかった。もとの正の数 a を求めなさい。 〈専修大附〉
- **14** 連続する3つの正の整数がある。最も大きい数の平方は他の2数の平方の和より480小さい。この3つの整数を求めなさい。 〈専修大松戸〉
- **15** 縦が $24 \, \text{m}$, 横が $35 \, \text{m}$ の長方形の土地がある。図のように,長方形の各辺に面した部分が $x \, \text{m}$ の道路をつけて,残りの部分(影の部分)を畑にしたい。畑の面積が $726 \, \text{m}^2$ になるような $x \, \text{を求めなさい}$ 。〈法政大一〉



16 バーゲンセールで、ある商品の定価をx割引きで売ったら、通常よりも売上個数が(x+1)割増え、 売上高も通常よりも 4 %増えたという。x の値を求めなさい。 〈慶応女子〉

挑戦問題

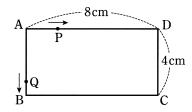
- 17 「たすきがけの因数分解」を使って、次の2次方程式を解きなさい。
- (1) $3x^2 2x 8 = 0$ 〈西武学園文理〉 (2) $2x^2 3x 2 = 0$ 〈育英〉
- (3) $2(x-\sqrt{3})^2 3(x-\sqrt{3}) 2 = 0$ (4) $6x^2 x 12 = 0$ 〈東奥義塾〉 〈共立女子〉



18 2次方程式 $ax^2 + bx + c = 0$ が $x = \frac{1}{2}$, 1 を解にもつとき,

$$\frac{(2a+b+c)(a+2b+c)(a+2b+5c)}{(a+b+2c)^2(a+3b+4c)} =$$
 である。

19 AB が 4cm, AD が 8cm の長方形 ABCD がある。点 P は A から辺上を D を通り C まで毎秒 1cm の速さで動く。点 Q は A を点 P と同時に出発して毎秒 2cm の速さで辺上を B, C, D, A と進む。なお,点 P, Q は出発してから 12 秒後に停止する。



 \triangle APQ の面積が長方形 ABCD の面積の $\frac{1}{4}$ になるのは A を出発してから何秒後ですか。すべて答えなさい。

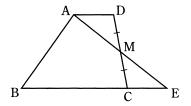
〈大阪桐蔭〉

- **20** 6%の食塩水が 200g ある。これからxg の食塩水を取り出し、そのかわりに同量の水を入れる。次に、こうしてできた食塩水から再びxg を取り出して、そのかわりに同量の水を入れたところ、4.86%の食塩水 200g ができた。次の問いに答えなさい。 〈徳島文理〉
 - (1) 最初にxgの食塩水を取り出したあとの食塩の量をxを用いて表せ。
 - (2) 最初に取り出した食塩水の量を求めよ。
- **21** 54 km 離れた A 町,B 町がある。P 君,Q 君が同じ道を P 君は A 町から B 町へ,Q 君は B 町から A 町へ向かって同時に自転車で出発した。 2 人がすれ違ったあと,Q 君が A 町に着くのに 45 分かかった。 出発後 2 人がすれ違うまでにかかった時間を求めなさい。ただし,P 君の速さは時速 $12 \, \mathrm{km}$ とする。

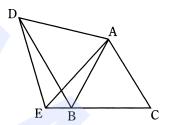
→ 三角形と四角形

練習問題

- [三角形の合同条件] 次の問いに答えなさい。
 - (1) 右の図は、AD//BC の台形 ABCD で、M は辺 CD の中点である。AM、BC それぞれの延長の交点を E とするとき、点 M は線分 AE の中点となることを証明せよ。

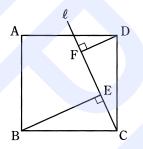


(2) 右の図で、△ABC と△ADE は正三角形で Dあり、3つの点 E、B、C は一直線上にある。このとき、DB = EC となることを証明せよ。



2 [**直角三角形の合同条件**] 図のように,正方形 ABCD の頂点 C を通り,辺 AD と交わる直線 ℓ に頂点 B, D から垂線を引き, ℓ との交点をそれぞれ E, F とする。

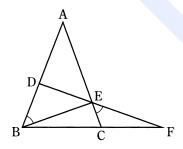
このとき、CE = DF を証明しなさい。



3 [二等辺三角形の性質・二等辺三角形になるための条件]

AB = AC である二等辺三角形 ABC で,右の図のように,点 D, E をそれぞれ辺 AB,AC 上にとり,DE の延長と BC の延長の交点を F とする。

∠ FEC = ∠ ABE であるとき, △ EBF は 二等辺三角形であることを証明しなさい。



eポイント 9

1 三角形の合同条件

- 3組の辺がそれぞれ等しい。
- ② 2組の辺とその間の角が それぞれ等しい。
- ③ 1組の辺とその両端の角がそれぞれ等しい。
- (2) \angle DAB = 60 ° + \angle EAB \angle EAC = 60 ° + \angle EAB

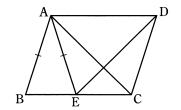
2 直角三角形の合同条件

- ① 斜辺と1つの鋭角がそれぞれ等しい。
- ② 斜辺と他の1辺がそれ ぞれ等しい。

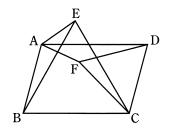
3 二等辺三角形の性質

- ① 底角は等しい。
- ② 頂角の二等分線は底辺を垂直に2等分する。
- **二等辺三角形になるための 条件**… 2 つの角が等しい。

- 4 [平行四辺形の性質] 次の問いに答えなさい。
 - (1) 図のような平行四辺形 ABCD において、辺 BC 上に AB = AE となる点 E をとるとき、△ABC ≡△EAD を証明せよ。

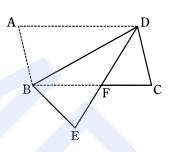


(2) 図のように、平行四辺形 ABCD の辺 BC、CD を 1 辺とする 2 つの正三角形 BCE および CDF をつくり、Aと E、Aと F をそれぞれ結ぶ。AE = AF を証明せよ。

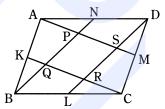


(3) 図のように、平行四辺形 ABCD を対角線 A、BD で折り、A が移った点を E、BC と DE の交点を F とする。

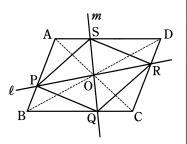
△ FBE ≡△ FDC を証明せよ。



- 5 [平行四辺形になるための条件] 次の問いに答えなさい。
 - (1) 図の平行四辺形 ABCD で, 点 K, L, M, N はそれぞれの辺の中点である。図のよう に線分の交点を P, Q, R, S とするとき, 四角形 PQRS は平行四辺形となることを証明せよ。



(2) 図のように、平行四辺形 ABCD の対角線の交点 O を通る 2 つの直線 ℓ, m が各辺と交わる点を P, Q, R, S とするとき、四角形 PQRS は平行四辺形になることを証明せよ。



4 平行四辺形の性質

- ① 2組の対辺はそれぞれ 平行である。(定義)
- ② 2組の対辺はそれぞれ 等しい。
- ③ 2組の対角はそれぞれ等しい。
- ④ 対角線はそれぞれの中 点で交わる。

(3) 折り返したものだから、△ABD ≡ △EBD

5 平行四辺形になるための 条件

- ① 2組の対辺がそれぞれ 平行である。(定義)
- ② 2組の対辺がそれぞれ 等しい。
- ③ 2組の対角がそれぞれ等しい。
- ④ 対角線がそれぞれの中 点で交わる。
- ⑤ 1組の対辺が平行でその長さが等しい。

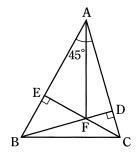
発展問題

6 図のように、 $\angle BAC = 45$ °の $\triangle ABC$ があり、頂点 B、C から辺 AC、AB にそ れぞれ垂線 BD, CE をひき, BD, CE の交点を F とする。 次の問いに答えなさい。

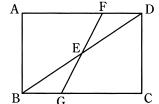
〈金光学園〉

(1) ∠ BFE の大きさを求めよ。

(2) **AF** = **CB** を証明せよ。



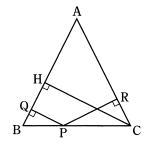
7 右の図のように、長方形 ABCD があり、対角線 BD の中点を E とする。辺 A AD上に、2点A、Dと異なる点Fをとり、2点E、Fを通る直線と辺BCと の交点をGとする。次の問いに答えなさい。



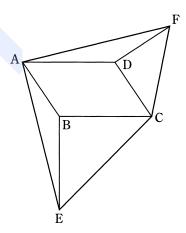
(1) BG = DF であることを証明せよ。

- (2) 点 G を通り、対角線 BD と平行な直線をひき、辺 CD との交点を H とす る。点 F と点 H を結ぶとき,FH + GH = BD であることを証明せよ。
- (コーチ)-(2) 補助線をひく。 AD, GH を延長する。
- **8** 右の図は、二等辺三角形 ABC の底辺 BC 上の点 P から、 2 辺 AB、AC にそれ ぞれ垂線 PQ, PR をひき, さらに, 点 C から辺 AB に垂線 CH をひいたものであ る。このとき、PQ + PR = CH の関係が成り立つことを証明しなさい。 $\langle 山形改 \rangle$

補助線をひく。 Pから CH へ垂線をひく。

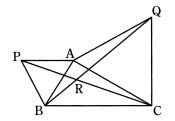


- **9** 右の図で、四角形 ABCD は∠ ABC = 124°の平行四辺形であり、 △ BEC は∠ CBE = 90°の直角二等辺三角形であり、△ DCF は ∠ FDC = 90°の直角二等辺三角形である。頂点 A と頂点 E, 頂点 A と 頂点Fをそれぞれ結ぶ。次の問いに答えなさい。 〈都立西〉
 - (1) \triangle BAE $\equiv \triangle$ DFA であることを証明せよ。
 - (2) **ZEAF** の大きさは何度か。



挑戦問題

10 図において、 \triangle PBA、 \triangle QAC が正三角形のとき、 \angle PRQ = である。 〈西大和学園〉



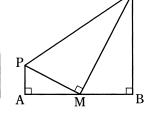
11 図において、AM = MB、 \angle PAM = \angle QBM = \angle PMQ = 90°である。

(1) $\angle APM = \angle QPM$ であることを示せ。

〈同志社〉

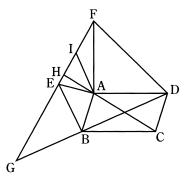
(2) PQ = PA + QB であることを示せ。

(2) 補助線をひく。 PM, QB を延長する。



12 図において,四角形 ABCD は平行四辺形,△ AEB は AB = AE の 直角二等辺三角形、 △ADF は AD = AF の直角二等辺三角形である。

また、点Gは直線DBと直線FEの交点であり、点Hは直線CAと直 線 EF の交点であり、点 I は線分 EF の中点である。このとき、次の(1)~ (3)を証明しなさい。 〈灘改〉



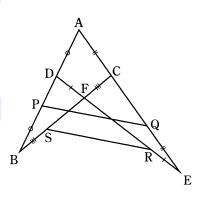
(1) $\triangle ABC \equiv \triangle EAF$

(2) AH ⊥ EF

(3) \angle BGE = \angle HAI

(3) 補助線をひく。 BからACへ垂線をひく。

13 図のように、 \triangle ABC と \triangle ADE が角 A を共有しており、点 F は辺 BC と辺 DE の交点である。辺 AB 上に BP = AD となる点 P, 辺 AE 上に EQ = AC となる点 Q, 辺 DE 上に ER = DF となる点 R, 辺 BC 上に BS = CF となる点 S をそれぞれとり、P と Q、R と S をそれぞれ 直線で結ぶ。このとき、PQ = RS であることを、次の方針で証明した。 方針: PQ = RS であることを示すには、四角形 (ア) が (イ) 形 であることを示せばよく,そのためには, $\boxed{\ }$ かつ $\boxed{\ }$ にあ $\boxed{\ }$ $\boxed{\ }$ の ることが示せればよい。 〈奈良学園〉



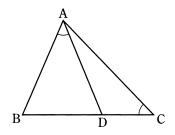
- (1) __(ア) ~ _ (エ) にあてはまることば、記号、式などを答えよ。
- (2) (ウ), (エ)が成り立つことを証明せよ。

- (2) 補助線をひく。
- Dを通り FC に平行な直線,
- Cを通りFD に平行な直線。

練習問題

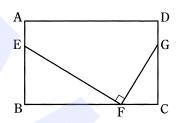
1 「相似の証明(1) 右の図は、△ABCの 辺 BC 上に、 \angle BAD = \angle BCA となるような 点 D をとったものである。

この図で、△ABD ∞△CBA であることを 証明しなさい。



2 [相似の証明②] 右の図において、点 E, F, G は長方形 ABCD の辺上にあり、 \angle EFG = 90 ° \overline{c} δ δ .

このとき、 $\triangle EBF \infty \triangle FCG$ であることを 証明しなさい。



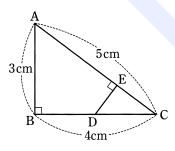
3 [此の計算] 次の式で、x の値を求めなさい。ただし、(4)でx > 0 とする。

(1) x:4=5:2

(2) 9:3=6:(x-3)

(3) 5: x = 8: (x + 9) (4) 2: x = (x - 1): 15

- **4** [相似の利用①] 右の図において, \triangle ABC II AB = 3cm, BC = 4cm, CA = 5cm の直角三角形である。辺BCの中点をDとし、 Dから辺ACにひいた垂線と辺ACとの交点 をEとする。次の問いに答えなさい。
 - (1) ED の長さを求めよ。
 - (2) AE: EC を求めよ。



ゥポイント 5

1 三角形の相似条件

- ① 3組の辺の比が等しい。
- ② 2組の辺の比が等しく, その間の角が等しい。
- ③ 2組の角がそれぞれ等 LVio

(最もよく使われる条件は ③である。)

2 証明のくふう

直角三角形の相似の証明の とき,次の関係がよく使わ れるので, 覚えておきたい。



 $\angle \bullet + \angle \mathbf{x} = 90^{\circ}, \ \angle \circ + \angle \mathbf{x} = 90^{\circ}$ より、 ∠•=∠○

3 比の計算

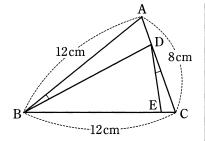
のとき、ad=bc

4 相似な図形

相似な図形では.

- ●対応する角は等しい。
- ●対応する線分の比は等し

AB : DE = BC : EF= AC : DF 5 [相似の利用②] 右の図のように、AB = BC = 12 cm、AC = 8 cm の二等辺三角形 ABC がある。辺 AC 上に、AD = 2 cm となる点 D をとり、辺 BC 上に、∠ABD = ∠CDE となる点 E をとる。次の問いに答えなさい。

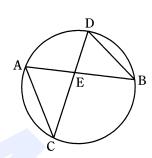


(1) EC の長さを求めよ。

(2) △ DBE : △ DEC を求めよ。

(3) △ABC:△DBEを求めよ。

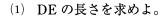
6 [**円と相似**①] 右の図は、円の弦 AB と CD の 交点を E とし、点 A と C、B と D を結んだもので ある。次の問いに答えなさい。



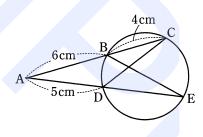
(1) △ACE と相似な三角形を答えよ。

(2) (1)の2つの三角形が相似であることを証明せよ。

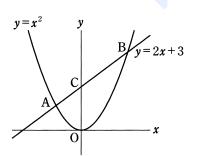
7 [**円と相似**②] 右の図について,次の問いに答えなさい。



(2) BE = 8 cm のとき, DC の長さを求め よ。



- (3) 点 B と D, C と E を結ぶ。BD = 4 cm のとき, CE の長さを求めよ。
- **8** [**関数とグラフへの利用**] 右の図は,直線 y = 2x + 3 と放物線 $y = x^2$ との交点を A,B,y 軸との交点を C としたものである。 次の問いに答えなさい。



- (1) 点 A, B の x 座標をそれぞれ求めよ。
- (2) AC: CB を求めよ。

5 面積の比

高さが同じである2つの三 角形の面積の比は、底辺の 長さの比に等しい。

(2)で、

 \triangle DBE : \triangle DEC = BE : EC

(3) 面積の倍の関係

$$\triangle DBE = \frac{BE}{BC} \times \triangle DBC$$

$$\triangle DBC = \frac{DC}{AC} \times \triangle ABC$$

6 円と相似(円周角の定理) 同じ弧に対する円周角の大きさは等しい(円周角の定理)ことをもとにして、2 組の角がそれぞれ等しいことを示す。

7 円と相似の利用

相似な三角形を見つけて, 対応する辺の比が等しいこ とを利用する。

- (1), (2)→△ ABE と相似な三 角形に着目する。
- (3)→ △ ABD と相似な三角形 に着目する。

8 座標上の線分の長さの比

KL : LM

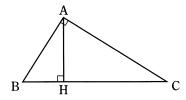
= (K と L の x 座標の差)

:(LとMのx座標の差)

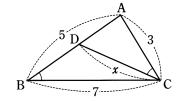
発展問題

9 右の図の $\angle A = 90$ °の直角三角形において、頂点 A から斜辺 BC にひい た垂線をAH とするとき、 $AH^2 = BH \times CH$ となることを証明しなさい。

〈暁改〉



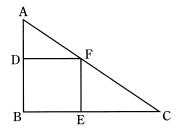
10 右の図のように、AB = 5、BC = 7、CA = 3 の \triangle ABC の辺 AB 上 に、点 D を \angle ABC = \angle ACD となるようにとるとき、線分 CD の長さ xを求めなさい。 〈成蹊〉



11 右の図の \triangle ABC は、AB = 6 cm、BC = 8 cm、CA = 10 cm の直角 三角形である。図のように3辺上に点D, E, Fをとって, 四角形 DBEF が正方形になるようにする。このときの正方形の1辺の長さを求めなさ (コーチ) 11

正方形の1辺の長さをxcm

として, 方程式をつくる。

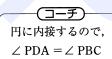


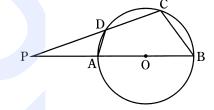
12 右の図のように,四角形 ABCD が円 O に内接している。AB は 直径で、BA、CD の延長線の交点をPとする。このとき、PA = 4、 OA = 3, DC = 3 である。次の問いに答えなさい。

(1) PD の長さを求めよ。

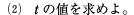
(2) AD: CB を求めよ。

(コーチ) 円に内接するので, $\angle PDA = \angle PBC$

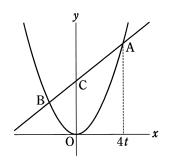




- (3) △ POD : △ DOC を求めよ。
- **13** 右の図のように、放物線 $y = x^2$ と直線 y = x + k が 2 点 A, B で交わ っている。直線とy軸との交点をCとし、AC: CB = 4: 3とするとき、 次の問いに答えなさい。 〈広陵〉
 - (1) 点Aのx座標を4tとするとき,点Bの座標をtで表せ。

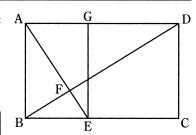


(3) kの値を求めよ。



挑戦問題

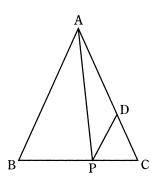
- **14** 右の図のように、長方形 ABCD があり、辺 AB より辺 AD の方が長 A いとする。辺BC上に点Eを、 $AB^2 = BE \times BC$ が成り立つようにとる。 AE と BD の交点を F とする。次の問いに答えなさい。 〈久留米大附〉
 - (1) **∠BFE** = 90°であること証明せよ。



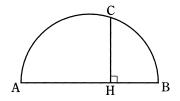
(2) 点 E から辺 AD に垂線 EG をひくとき, \angle GFC = 90°であることを証明せよ。

- (1) $AB^2 = BE \times BC$ AB : BE = BC : AB
- **15** 右の図のような AB = AC である二等辺三角形 ABC がある。辺 AC 上に 点 D を AD: DC = 2: 1 となるようにとる。また、辺 BC の長さを a とす る。いま、点 P が辺 BC 上を動くとき、AP + PD が最小となるときの点 BP の長さを a を用いて表しなさい。 -(コーチ)--〈中央大附〉

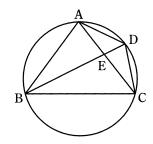
最短距離の問題 BC について D と対称な 点 D'をとって考える。



- 16 右の図のように、ABを直径とする半円周上に点Cをとり、点Cか らABに垂線CHをひく。次の問いに答えなさい。 〈弘前学園聖愛〉
 - (1) △ ACH ∽△ CBH を証明せよ。



- (2) AH = 8cm, HB = 1cm のとき、CH の長さを求めよ。
- **17** 右の図のように、AB = 9cm、BC = 12cm、CD = DA = 6cm の四角形 ABCD が円に内接している。四角形 ABCD の対角線 AC と BD の交点を E と するとき,次の問いに答えなさい。 〈筑波大附〉
 - (1) BE の長さは、DE の長さの何倍か求めよ。
 - (2) △ BCD の面積は, △ ABE の面積の何倍か求めよ。 また、DEの長さを求めよ。



とすると、 $\begin{cases} x + y = 8 \\ 10y + x = 10x + y - 54 \rightarrow x - y = 6 \end{cases}$

$$\frac{20}{100}x + \frac{10}{100}y = 65, \quad \frac{6}{100}x + \frac{18}{100}y = 90$$

2x + y = 650, x + 3y = 1500

12 電車の長さをxm, 速さを秒速ym とすると, 636 + x = 31y, 1356 - x = 52y

13 去年の生徒数をx人とすると、

$$3.75 = 3\frac{3}{4} = \frac{15}{4}$$
 より, 3.75% … $\frac{15}{400} = \frac{3}{80}$ だから,

$$x\left(1-\frac{3}{80}\right) = 770, \ x = 800$$

去年の男子生徒数を y 人とすると,

$$-\frac{1}{8}y + \frac{1}{20}(800 - y) = 770 - 800, \ y = 400$$

今年の男子生徒数は、 $400\left(1-\frac{1}{8}\right)=350(人)$

14 (1) A, Bの食塩水の濃度をそれぞれ a%, b%とすると、

$$20 \times \frac{a}{100} + 30 \times \frac{b}{100} = 50 \times \frac{11.4}{100}$$
,

$$2a + 3b = 57$$

$$60 \times \frac{a}{100} + 20 \times \frac{b}{100} = 80 \times \frac{8.25}{100}$$

3a + b = 33

(2) Aの残りの食塩水をxgとすると

$$\frac{6}{100}x + \frac{15}{100}(100 - x) = 100 \times \frac{9.6}{100}, \ x = 60$$

はじめにあった量は、20+60+60=140(g)

p.9 ● 挑戦問題

(1) $x = \frac{2}{7}$, $y = \frac{11}{5}$ (2) $x = \frac{1}{3}$, $y = \frac{1}{4}$

- 16 2時43分38秒
- 17 時速5km
- A君が歩いた距離…4km 家から駅までの距離…14km
- 19 x = 3, y = 9.25
- 20 45分

解説

15 (1)
$$x - \frac{2}{7} = X$$
, $y - \frac{1}{5} = Y$ とおき, それぞれ の方程式の両辺に6をかけると, $4X + 3Y = 6$, $9X + 2Y = 4$

3X + 2Y = 17, 4X - 5Y = -8

16 1分間で、短針は0.5°、長針は6°進む。 2時x分に180°になったとすると,

$$6x - (60 + 0.5x) = 180, \ x = \frac{480}{11} = 43\frac{7}{11}$$

17 船の時速を x km, 川の流れを時速 v km とす ると, 2(x + y) = 12, 3(x - y) = 12

18 A君の歩いた距離をxkm, オートバイに乗 せてもらった距離をykmとすると,

$$\frac{x}{4} + \frac{y}{24} = \frac{x+y}{24} + \frac{50}{60}, \ 2y = 24 \times \frac{50}{60}$$

それぞれを解いて、r=4、v=10

19 AからBへ200g移すとBは8%になるから、

$$200 \times \frac{x}{100} + 800 \times \frac{y}{100} = 1000 \times \frac{8}{100} \dots \textcircled{1}$$

この食塩水から200gをAに戻すとAは4%になる

から、
$$800 \times \frac{x}{100} + 200 \times \frac{8}{100} = 1000 \times \frac{4}{100} \rightarrow x = 3$$

(1) $\sharp h$, x + 4y = 40 $\sharp > 7$, y = 9.25

20 水そうの容積(満水のときの水の量)を VL. 流れ込む水の量を毎分αLと表す。

ポンプX、Yが汲み出す量をそれぞれ毎分x L、v L とすると,

$$9(x-a) = V$$
, $5(y-a) = V$, $3(x+y-a) = V$

3つの等式より、xとyを消去すると、 $\frac{V}{a} = 45$

2次方程式とその利用

p.10~11 ● 練習問題

1 (1)
$$x = \frac{1}{2}$$
, $-\frac{2}{3}$ (2) $x = 0$, 5

- (3) x = 1, 2(5) x = -3, 3
- (4) x = -5, 9

- **2** (1) $x = \pm 4$ (2) $x \pm \frac{3}{2}$ (3) $x = 3 \pm \sqrt{5}$ (4) x = 0,
 - (4) x = 0, -4
- **3** (1) $x = -3 \pm \sqrt{13}$ (2) $x = 4 \pm 2\sqrt{3}$ **4** (1) $x = \frac{3 \pm \sqrt{21}}{2}$ (2) $x = \frac{5 \pm \sqrt{37}}{6}$
 - (3) $x = -5 \pm \sqrt{5}$ (4) $x = 2, \frac{3}{2}$
- **5** (1) a = 6, x = -13 (2) $-1 + \sqrt{2}$
- 7 (1) 6 cm & 14 cm (2) 20 cm
- **8** x = 3
- 9 (1) 8秒後
- (2) 2秒後, 6秒後

解説

2 (4)
$$(x+2)^2 = 4$$
, $x+2 = \pm 2$

3 (1)
$$x^2 + 6x = 4$$
 (2) $x^2 - 8x = -4$
 $x^2 + 6x + 3^2 = 4 + 3^2$ $x^2 - 8x + 4^2 = -4 + 4^2$
 $(x+3)^2 = 13$ $(x-4)^2 = 12$
 $x+3 = \pm \sqrt{13}$ $x-4 = \pm 2\sqrt{3}$

4 (3)
$$x = \frac{-10 \pm \sqrt{20}}{2} = \frac{-10 \pm 2\sqrt{5}}{2} = -5 \pm \sqrt{5}$$

(4)
$$x = \frac{7 \pm \sqrt{1}}{4} = \frac{7 \pm 1}{4}, \frac{7+1}{4} = 2, \frac{7-1}{4} = \frac{3}{2}$$

5 (2)
$$a^2-2a-1=0$$
 が成り立つから, $a^2-3a-1=(a^2-2a-1)-a=-a$ また,方程式を解いて, $a=1-\sqrt{2}$

6 連続する2つの奇数を
$$2x-1$$
, $2x+1$ とすると, $(2x-1)^2 + (2x+1)^2 = 130$, $x^2 = 16$ $x > 0$ より, $x = 4$

7 (1) 縦の長さを
$$x$$
cm とすると、 $x(20-x) = 84$
 $x^2 - 20x + 84 = 0$. $(x-6)(x-14) = 0$

(2) もとの紙の縦の長さを
$$x$$
cm とすると、容器の縦… $x-8$ (cm)、横… $x+3-8=x-5$ (cm)高さ… 4 cm だから、($x-8$)($x-5$)× $4=720$ ($x-8$)($x-5$)= 180 , $x^2-13x-140=0$ ($x+7$)($x-20$)= 0

8
$$2000\left(1+\frac{x}{10}\right)\left(1-\frac{x}{10}\right)-2000=-180, \ x^2=9$$

9 (1)
$$40t - 5t^2 = 0$$
, $t(t - 8) = 0$
(2) $40t - 5t^2 = 60$, $t^2 - 8t + 12 = 0$, $(t - 2)(t - 6) = 0$

● 発展問題 p.12

10 (1)
$$x = \frac{1 \pm \sqrt{13}}{2}$$
 (2) $x = 3, -1$

(3)
$$x = 1, 7$$

(3)
$$x = 1, 7$$
 (4) $x = \frac{3}{2}, y = \frac{1}{2}$

11
$$b=1, c=-6$$

- 12
- 13 a = 3
- 23, 24, 25
- 15 x=2
- 16 x = 2

解説

- **10** (1) 展開して整理すると, $x^2 x 3 = 0$
 - (2) 展開して整理すると, $x^2 2x 3 = 0$ または、2x-3=Xとおき、 $X^2+2X-15=0$ を解くと、X=3、-5
 - (3) 両辺に12をかけて整理すると、 $x^2 8x + 7 = 0$
 - (4) 第2式を第1式に代入すると、 $x^2 - (3x - 4)^2 = 2$, $4x^2 - 12x + 9 = 0$. $(2x-3)^2=0$
- **11** 方程式に、x=-3、2を代入すると、それぞれ、 9-3b+c=0, 4+2b+c=0 これを解く。 または、x=-3、2を解とする2次方程式の1つは、 (x+3)(x-2)=0と表されることを使う。
- **12** 2つの解がa, bだから、次の等式が成り立つ。

$$2a^2-4a-1=0$$
, $2b^2-4b-1=0$
それぞれから, $a^2-2a=\frac{1}{2}$, $b^2-2b=\frac{1}{2}$
この2式の和は1と等しい。

13
$$2(a+2)+3=(a+2)^2+3-15$$
 $a>0$ で解く。

14 連続する3つの正の整数を
$$x-1$$
, x , $x+1$ とおくと, $(x+1)^2 = (x-1)^2 + x^2 - 480$ $x^2 - 4x - 480 = 0$, $(x+20)(x-24) = 0$ $x > 0$ より, $x = 24$

15 4つの台形を辺が接するように並べると、縦
$$(24-x)$$
 m、 $(35-x)$ m の長方形ができる。 $(24-x)(35-x)=726$ 、 $x^2-59x+114=0$ $(x-2)(x-57)=0$ 、 $0 < x < 24$ より、 $x=2$

16 定価
$$a$$
 円のとき b 個売れたとすると、
$$a\left(1-\frac{x}{10}\right) \times b\left(1+\frac{x+1}{10}\right) = ab\left(1+\frac{4}{100}\right)$$
$$x^2+x-6=0, \quad (x+3)(x-2)=0, \quad x>0$$
 より、 $x=2$

● 挑戦問題 p.13

17 (1)
$$x=2$$
, $-\frac{4}{3}$ (2) $x=2$, $-\frac{1}{2}$

(3)
$$x = 2 + \sqrt{3}, -\frac{1}{2} + \sqrt{3}$$

(4)
$$x = \frac{3}{2}, -\frac{4}{3}$$

- **18** 2
- **19** 4秒後, $(4+2\sqrt{2})$ 秒後

20 (1)
$$\frac{3}{50}(200 - x)g$$
 (2) 20g

1時間30分

解説

17 (3)
$$x-\sqrt{3}=X$$
 とおくと、 $2X^2-3X-2=0$ (2)より、 $X=2$ 、 $-\frac{1}{2}$

18 方程式に
$$x = \frac{1}{2}$$
, 1 を代入すると, それぞれ, $a + 2b + 4c = 0$ …①, $a + b + c = 0$ …②
②より, $2a + b + c = a + (a + b + c) = a$ 同様に, ②より, $a + 2b + c = b$, $a + b + 2c = c$ ①より, $a + 2b + 5c = c$, $a + 3b + 4c = b$ よって, 与式= $\frac{abc}{c^2b} = \frac{a}{c}$ ① -②×2より, $-a + 2c = 0$, $a = 2c$ したがって, 与式= 2

19
$$x$$
 秒後の \triangle APQ の面積を S cm² と表し, $S = 8$ となる x の値を求める。

①
$$0 \le x \le 2 \text{ O }$$
 \ge A $S = \frac{1}{2} \times x \times 2x = x^2$ $2x \text{ cm}$

 $S = 8, 0 \le x \le 2 \$ 満たすxの値はない。

②
$$2 \le x \le 6$$
 \emptyset ξ ξ

$$S = \frac{1}{2} \times x \times 4 = 2x$$

 $S = 8 \, \ \ \, \downarrow \, \ \ \, \downarrow \, \ \, \chi = 4$

③ $6 \le x \le 8$ のとき DQ = 4 + 8 + 4 - 2x= 16 - 2x(cm) だから、 $S = \frac{1}{2}x(16-2x)$

$$=8x-x^2$$

$$S = 8$$
, $6 \le x \le 8 \$ b $)$, $x = 4 + 2\sqrt{2}$

4
$$8 \le x \le 12 \text{ O } \ge 8$$

 $AQ = 24 - 2x(cm)$,

$$AQ = 24 - 2x$$
(cm),
DP = $x - 8$ (cm) だから,

$$8 \le x \le 120028$$
 $AQ = 24 - 2x(cm)$,
 $DP = x - 8(cm)$ だから,
 $S = \frac{1}{2}(24 - 2x)(x - 8)$

$$= -x^2 + 20x - 96$$

$$S=8$$
, $8 \le x \le 12$ を満たす x の値はない。

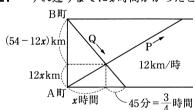
20 (1)
$$\frac{6}{100}(200 - x)g$$

(2)
$$\frac{3}{50} (200 - x) \times \frac{200 - x}{200} = 200 \times \frac{4.86}{100}$$

 $(200 - x)^2 = 2^2 \times 9^2 \times 10^2 = 180^2$

 $200 - x > 0 \$ \$\text{\$\text{\$b\$}} \ , \ $200 - x = 180, \ x = 20$

すれ違うまでにx時間かかったとする。



上の図から、Qの速さは、 $12x \div \frac{3}{4} = 16x(\text{km/時})$ よって、 $16x \times x = 54 - 12x$ 、 $8x^2 + 6x - 27 = 0$ (2x-3)(4x+9)=0, $x>0 \$ b 1, $x=\frac{3}{2}$

1 次関数

p.14~15 ●練習問題

1 (1)
$$y = -3x$$
 (2) $x = \frac{3}{2}$

(2)
$$x = \frac{3}{2}$$

(3) ①
$$y = \frac{2}{5}x$$
 ② $y = -\frac{4}{3}x$

②
$$y = -\frac{4}{3}x$$

(3)
$$y = \frac{6}{x}$$
 (4) $y = -\frac{12}{x}$

2 (1)
$$y = \frac{2}{3}x + 1$$

2 (1)
$$y = \frac{2}{3}x + 1$$
 (2) ① $y = \frac{1}{2}x + 3$

(2)
$$y = \frac{1}{3}x - \frac{5}{3}$$

②
$$y = \frac{1}{3}x - \frac{5}{3}$$
 ③ $y = -\frac{3}{2}x + 5$

3 (1) xの増加量…8, yの増加量…-4

変化の割合…
$$-\frac{1}{2}$$
 (2) $\frac{3}{10}$

(2)
$$\frac{3}{10}$$

(3) 1
$$-2 \le y \le 8$$
 2 $-6 < y < 0$

$$(2) \quad -6 < v < 0$$

4 (1)
$$P\left(\frac{4}{3}, \frac{2}{3}\right)$$
 (2) $a = -2$

(2)
$$a = -2$$

(3)
$$a = 3$$
, $b = 1$

5 (1)
$$y = -2x + 9$$
 (2) $y = \frac{1}{2}x + 4$

6 (1) ①
$$\triangle ADE = \frac{9}{2}$$
, $\triangle BDC = \frac{3}{2}$

(2) ① B(4, 3) ②
$$a = \frac{7}{4}$$

②
$$a = \frac{7}{4}$$

解説

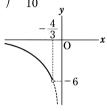
3 (2) xの増加量…5-2=3

$$y$$
の増加量… $-\frac{3}{5} - \left(-\frac{3}{2}\right) = \frac{9}{10}$

(3) ②
$$\cdots x = -\frac{4}{3}$$
 $\emptyset \ge 3$,

$$y = 8 \div \left(-\frac{4}{3}\right) = -6$$

右のグラフから、 -6 < y < 0



4 (1) $\ell \cdots \nu = 2x - 2$, $m \cdots \nu = -x + 2$ 2式を連立方程式として解く。

(2) 連立方程式y = x + 3, $y = \frac{3}{2}x + 1$ を解くと,

x=4, y=7 これをy=ax+15に代入する。 (3) x=2, y=-1をそれぞれの式に代入する。

5 (1) y = -2x + b にx = 2, y = 5 を代入し, b = 9

(2) 傾きは, $-2 \times a = -1$ より, $a = \frac{1}{2}$

6 (1) ① $\ell \cdots y = -\frac{2}{3}x + 4$, $m \cdots y = -2x + 6$

 $D\left(\frac{3}{2}, 3\right)$, E(3, 0)と求められる。

 $\triangle ADE = \frac{1}{2} \times 3 \times 3, \ \triangle BDC = \frac{1}{2} \times 2 \times \frac{3}{2}$

② 線分ABの中点は(3, 2)だから, $y = \frac{2}{3}x$

(2) ①…点 C は点 O を右へ1, 上へ2 移した点。 点Bは点Aを同様に移し、B(3+1,1+2) $\angle z + \angle f + \angle g = \angle 180^{\circ}$

上の等式をそれぞれの辺どうし加えると,

 $\angle a + \angle b - \angle c + \angle d - \angle e + \angle f + \angle g = 180^{\circ}$

- **18** (1) 5つある三角形のそれぞれで、2つの内 角の和は、真ん中の五角形の1つの内角に等 しい。五角形の内角の和は540°
- (2) 図の ABC の内角 で考える。

 $\angle a + \angle d + \angle g = \angle A$

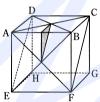
 $\angle b + \angle e = \angle C$ $\angle c + \angle f = \angle B$ それぞれの辺どうし を加えると、

 $\angle a + \angle b + \angle c + \angle d + \angle e + \angle f + \angle g$ $= \angle A + \angle B + \angle C = 180^{\circ}$

19 円柱から高さ4cmの2つの円錐を除き、2重 に除いた、高さの和が4cmの2つの合同な小さ い円錐(底面の半径は1cm)を加える。

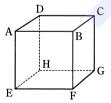
$$\pi\times2^2\times4-\left(\frac{1}{3}\ \pi\times2^2\times4\right)\times2+\frac{1}{3}\ \pi\times1^2\times4$$

20 (1) 共通な部分は、図 の斜線の直角二等辺三 角形(等辺は3cm)を底 面とし、高さの和が 6cmの2つの三角錐を 合わせたものとなる。



$$\frac{1}{3} \times \left(\frac{1}{2} \times 3^2\right) \times 6 = 9 \, (\text{cm}^3)$$

- (2) $6^3 \left| \frac{1}{3} \times \left(\frac{1}{2} \times 6^2 \right) \times 6 \right| \times 2 + 9 = 153 \text{ (cm}^3)$
- 21 右の立方体で考える。
 - (2) 直線ADは、面EFGH、 面BFGC と平行だが、そ の2つの面は平行ではな



- (3) 直線AB, AD は面 E EFGHと平行だが、2つ の直線は平行ではない。
- (5) 面AEFB, 面AEHD は面EFGHと垂直だが、 2つの面は平行ではない。
- **22** (2) ① Bを通る直線は、P, Q, S, T, U のどれかを通る5本。C, D, E, F, につい ても同様で、全部で、 $5 \times 5 = 25$ (本)ある。
 - ② ARを含む平面上の直線を調べると.

面 ABRU …… BU (交わる)

面 APRC …… CP (交わる)

面AQRD …… DQ (交わる)

面 ARE ……なし

面ARSF ······FS (平行)

直線ARと交わる直線は3本、平行な直線は1 本あり, 他の直線はARと同じ平面上にない (平行でもない)から、ねじれの位置にある。

6 三角形と四角形

p.26~27 ●練習問題

- **1** (1) △AMD と△EMC において. 仮定から、MD = MC 対頂角は等しいから、 ∠AMD = ∠EMC AD//BE で錯角は等しいから、 $\angle ADM = \angle ECM$ 1組の辺とその両端の角がそれぞれ等しいの \circ . \triangle AMD \equiv \triangle EMC よって、AM = EM すなわち、点M は線
 - (2) △ADBと△AECにおいて, 正三角形の辺だから, AB = AC, AD = AE

分AE の中点である。

 $\sharp \mathcal{L}$, $\angle DAB = 60^{\circ} + \angle EAB$, $\angle DAB = \angle EAC$

2組の辺とその間の角がそれぞれ等しいので.

 $\triangle ADB \equiv \triangle AEC$ よって、DB = EC

2 △BCEと△CDFにおいて、 仮定から、∠BEC =∠CFD = 90° 正方形の辺だから、BC = CD $\sharp \, t$, $\angle BCE = 90^{\circ} - \angle FCD$,

 $\angle CDF = 180^{\circ} - 90^{\circ} - \angle FCD$

 \angle BCE = \angle CDF

直角三角形の斜辺と1つの鋭角がそれぞれ等 しいので、 $\triangle BCE \equiv \triangle CDF$ よって、CE = DF

- **3** $\angle EBF = \angle ABC \angle ABE$ \angle ACB は \triangle ECF の外角だから、
 - $\angle EFB = \angle ACB \angle FEC$
 - AB = ACから、 $\angle ABC = \angle ACB$(3) 仮定から、 ∠ABE = ∠FEC(4)

①, ②, ③, ④ \sharp \flat , $\angle EBF = \angle EFB$ 2つの角が等しいので、△EBFは、

EB = EFの二等辺三角形である。

4 (1) △ABC と△EAD において、

仮定から、AB = EA 平行四辺形の対辺だから、BC = AD …②

t, AB = AE h,

 $\angle ABC = \angle AEB$

BC//AD で錯角は等しいから,

 $\angle AEB = \angle EAD$ 3, 4, $\angle ABC = \angle EAD$

①, ②, ⑤より, 2組の辺とその間の角がそ れぞれ等しいので、 $\triangle ABC \equiv \triangle EAD$

- - ①、②、③より、2組の辺とその間の角がそれぞれ等しいので、 \triangle ABE $\equiv \triangle$ FDA よって、 \triangle AE = AF
- (3) \triangle FBE $\ge \triangle$ FDC において、 折り返したものだから、 BE = BA、 \angle E = \angle A 平行四辺形の対辺、対角だから、 AB = DC、 \angle A = \angle C よって、BE = DC ······①、 \angle E = \angle C ···② また、 \angle BFE = \angle DFC (対頂角) \ge ②より、 \angle FBE = \angle FDC ······③ ①、②、③より、1組の辺とその両端の角が
- (1) AB//DCより、AK//MC AB = DCより、AK = MC よって、四角形AKCMは、1組の対辺が 平行で長さが等しいから、平行四辺形であり、AM//KC、PS//QR ……① 同様に、四角形NBLDは平行四辺形であり、PQ//SR ……②
 ①、②より、四角形PQRSは、2組の対辺

それぞれ等しいので、 $\triangle FBE \equiv \triangle FDC$

がそれぞれ平行なので、平行四辺形である。
(2) \triangle OAP $\ge \triangle$ OCR において、
O は対角線の交点だから、OA = OC $\ge \triangle$ AOP = $\ge \triangle$ COR (対頂角) $\ge \triangle$ OAP = $\ge \triangle$ OCR (錯角)
1 組の辺とその両端の角がそれぞれ等しいので、 \triangle OAP = \triangle OCR よって、OP = OR 同様に、 \triangle OBQ = \triangle ODS、OQ = OS よって、四角形 PQRS は、対角線がそれぞ

れの中点で交わるので、平行四辺形である。

p.28 ● 発展問題

(1) 45°
 (2) △AEF と△CEB において、
 ∠AEF = ∠CEB (= 90°)
 △AEC、△FEB はそれぞれ直角二等辺三角形だから、AE = CE、EF = EB
 2組の辺とその間の角がそれぞれ等しいので、
 △AEF ≡△CEB よって、AF = CB

7 (1) △EBG と△EDF において、仮定から、EB = ED 対頂角は等しいから、∠BEG = ∠DEF AD//BC で錯角は等しいから、∠EBG = ∠EDF 1 組の辺とその両端の角がそれぞれ等しいので、△EBG = △EDF よって、BG = DF

(2) AD. GHを延

辺と1つの鋭角がそれぞれ等しいので、 \triangle SPC \equiv \triangle RCP よって、CS = PR

①, ② \sharp \mathfrak{h} , PQ + PR = SH + CS = CH

9 (1) △BAE と△DFAにおいて、 平行四辺形の対辺だから、BA = CD 直角二等辺三角形の辺だから、CD = DF よって、BA = DF① 同様に、BE = DA② また、∠ABE = 360°-90°-∠ABC ...③ ∠FDA=360°-90°-∠CDA ...④ 平行四辺形の対角だから、

 \angle ABC = \angle CDA⑤ ③, ④, ⑤より, \angle ABE = \angle FDA⑥ ①, ②, ⑥より, 2 組の辺とその間の角がそれぞれ等しいので, \triangle BAE $\equiv \triangle$ DFA

(2) 90°

解説

6 (1) △ABD は直角二等辺三角形, したがって,

△FEBも直角二等辺三角形になる。

- $\angle EAF = \angle EAB + \angle BAD + \angle DAF$ $= \angle BAD + (\angle EAB + \angle BEA)$ $= (180^{\circ} - \angle ABC) + (180^{\circ} - \angle ABE)$ $=360^{\circ} - \angle ABC - \angle ABE = \angle EBC = 90^{\circ}$
 - p.29 ● 挑戦問題

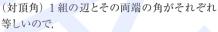
10 120

11 (1) PM, QBを延長 し、その交点をRとする。 △PAM と△RBM にお いて、仮定から、

 $\angle PAM = \angle RBM$

 $AM = BM \pm c$.

 $\angle AMP = \angle BMR$



 $\triangle PAM \equiv \triangle RBM$ したがって.

 $PM = RM \cdots 1$, $PA = RB \cdots 2$ ①より、QM は線分PRの垂直二等分線だ

から、PQ = RQ

よって、 $\angle QPM = \angle QRM$ また、 $\angle APM = \angle QRM(錯角)$ だから、 $\angle APM = \angle QPM$

(2) ②, ③より,

PQ = RQ = RB + QB = PA + QB

12 (1) △ABC と△EAF において. 仮定からAB = EA, BC = AD = AFAD//BCから、 \angle ABC = 180 $^{\circ}$ - \angle BAD $\sharp \, \mathcal{L}, \ \angle \, \text{EAF} = 360\,^{\circ} - 90\,^{\circ} \times 2 - \angle \, \text{BAD}$ $= 180^{\circ} - \angle BAD$

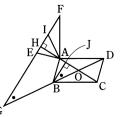
だから、 $\angle ABC = \angle EAF$ 2組の辺とその間の角がそれぞれ等しいので, $\triangle ABC \equiv \triangle EAF$

(2) △AEH において.

(1) \downarrow \flat , \angle AEH = \angle BAC \angle EAH = 180° - 90° - \angle BAC = 90° -∠BAC だから, \angle AHE = 180 $^{\circ}$ – \angle AEH – \angle EAH = 180° $- \angle$ BAC - (90° $- \angle$ BAC) = 90°

よって、 $AH \perp EF$

(3) ACとBDの交 点をOとし、B からCHへ垂線 BJをひく。 GF//BJより, \angle BGE = \angle JBO

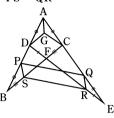


 \triangle ABC \equiv \triangle EAF で, 点 O, I はそれぞれ AC, EFの中点だから,

 $\cdots (1)$

 $\triangle ABO \equiv \triangle EAI$ したがって、垂線BJ、AH について、 $\angle JBO = \angle HAI$ ①, ② \sharp \mathfrak{h} , \angle BGE = \angle HAI **13** (1) (ア) PSRQ, (イ) 平行四辺 (\dot{p}) PS//QR, (x) PS = QR (2) **Dを通りFC**に 平行な直線、Cを

通り FD に平行な 直線をひき、その 交点をGとする と,四角形DFCG B は平行四辺形であ



る。また、AとGを結ぶ。 \triangle ADG \Diamond PBS \Diamond PBS \Diamond 仮定から、AD = PB, DG = FC = BSDG//BCから、 \angle ADG = \angle PBS 2組の辺とその間の角がそれぞれ等しいので.

 $\triangle ADG \equiv \triangle PBS$

よって、AG = PS....(1)

 $\angle DAG = \angle BPS \downarrow \emptyset$, AG//PS ...(2)

同様に、 $\triangle ACG \equiv \triangle QER$ より、

·····(4) $AG = QR \cdots 3$, AG//QRしたがって、①と③、②と④から

PS = QR, PS//QR

解説

10 $\triangle APC \equiv \triangle ABQ (AP = AB, AC = AQ,$ $\angle APR = \angle ABR$ よって、 $\angle PRQ = \angle BPR + \angle PBR$ $= (60^{\circ} - \angle APR) + (60^{\circ} + \angle ABR)$ $= 120^{\circ} - \angle APR + \angle ABR = 120^{\circ}$

● 円周角とその利用

p.30 ~ 31 ● 練習問題

- 1 (1) $\angle x = 45^{\circ}, \angle y = 90^{\circ}$
 - (2) $\angle x = 50^{\circ}, \angle y = 130^{\circ}$
 - (3) $\angle x = 35^{\circ}, \angle y = 27^{\circ}$
 - (4) $\angle x = 124^{\circ}, \angle y = 62^{\circ}$
 - (5) $\angle x = 43^{\circ}, \ \angle y = 47^{\circ}$
 - (6) $\angle x = 50^{\circ}, \angle y = 82^{\circ}$
- **2** (1) 弦ADをひくと、AB//CDより、錯角 は等しいから、 ∠ADC = ∠BAD 等しい円周角に対する弧は等しいから, AC = BD
 - (2) $\angle ADB = 36^{\circ}$, $\angle ACD = 72^{\circ}$ \angle DHC = 72°
 - (3) $\angle x = 28^{\circ}$
- 3 (1) A L F L C L E, B L C L F L D

⑩ 相似(1)

- 1 △ABDと△CBAにおいて、 共通の角より、 ∠ABD = ∠CBA 仮定より、∠BAD =∠BCA 2組の角がそれぞれ等しいので、△ABD ∞△CBA
- **2** △EBFと△FCGにおいて、 \angle EBF = \angle FCG = 90° \angle EFB = \angle FGC = 90 $^{\circ}$ - \angle GFC 2組の角がそれぞれ等しいので、△EBF ∞△FCG
- (2) x = 5(3) x = 15(4) x = 6
- **4** (1) $\frac{6}{5}$ cm (2) 17:8
- **5** (1) 1cm (2) 11:1 (3) 16:11
- **6** (1) △DBE
 - (2) △ACEと△DBEにおいて、CBに対す る円周角より、∠CAE = ∠BDE ······① 対頂角より∠AEC =∠DEB 2組の角がそれぞれ等しいので, \triangle ACE \triangle DBE
- (2) $\frac{20}{3}$ cm (3) 8cm **7** (1) 7cm
- **8** (1) A(-1, 1), B(3, 9)(2) 1:3

解説

- **4** (1) △ABC ∞△DEC が成り立つので, AB : DE = AC : DC, 3 : DE = 5 : 2, $DE = \frac{6}{5} (cm)$
- (2) $AC : DC = BC : EC \sharp \emptyset$, $5: 2=4: EC, EC = \frac{8}{5}$ \$\(\)\$\$ \$\(\)\$

AE : EC =
$$\left(5 - \frac{8}{5}\right) : \frac{8}{5} = \frac{17}{5} : \frac{8}{5} = 17 : 8$$

- 5 (1) 仮定より∠DBA = ∠EDC, 二等辺三角形 ABCの底角より $\angle BAD = \angle DCE$ だから、 $\triangle ABD \otimes \triangle CDE$ \$\(\mathbf{L} \gamma \tau, \) AB : CD = AD : CE, 12: (8-2) = 2: CE, CE = 1 (cm)
 - (2) △DBE と△DEC は高さが等しいので、面積 の比は底辺の比に等しい。よって、△DBE: $\triangle DEC = BE : EC = (12 - 1) : 1 = 11 : 1$
 - (3) BE: BC = 11: 12, CD: CA = 3: 4 \sharp \flat , $\triangle DBE = \frac{11}{12} \triangle DBC = \frac{11}{12} \times \frac{3}{4} \triangle ABC$ $=\frac{11}{16}\triangle ABC$ \$57, 1: $\frac{11}{16}$ = 16: 11
- **7** (1) ∠BAE = ∠DAC(共通の角), ∠AEB $= \angle ACD(\widehat{BD})$ に対する円周角)より、

- AB : AD = AE : AC, 6 : 5 = (5 + x) : (6 + 4),x = 7 (cm)
- (2) $\triangle ABE \otimes \triangle ADC \downarrow \emptyset$, AB : AD = BE :DC, $6:5=8:DC, DC = \frac{20}{3}(cm)$
- (3) ∠BAD = ∠EAC(共通の角), ∠ABD = ∠AEC(内接四角形BDECの角)より, EC, 5:10 = 4:EC, EC = 8(cm)
- **8** (1) $x^2 = 2x + 3$ を解くとx = -1, 3だから, A (-1, 1), B(3, 9)
 - (2) AC: CB = (Aのx座標の絶対値): (Bのx 座標)=1:3

p.46

● 発展問題

- 9 △ABHと△CAHにおいて、 \angle AHB = \angle CHA = 90° \angle ABH = \angle CAH = 90 $^{\circ}$ – \angle BAH 2組の角がそれぞれ等しいので、△ABH ∽△CAH よって、AH:CH=BH:AHこれより、 $AH^2 = BH \times CH$
- 10 x = 4.2
- $\frac{24}{7}$ cm
- **12** (1) 5 (2) 1 : 2 (3) 5 : 3
- **13** (1) $B(-3t, 9t^2)$ (2) t = 1
 - (3) k = 12

解説

- **10** $\triangle ABC \otimes \triangle ACD \downarrow b$, AB : AC = BC :CD, 5:3=7:x, x=4.2
- **11** △ADF、△FECは△ABCと相似で、3辺の 比は6:8:10=3:4:5 よって、

DF = FE = xcm とおくと, EC =
$$\frac{4}{3}$$
 xcm

よって,
$$x + \frac{4}{3}x = 8$$
, $x = \frac{24}{7}$ (cm)

- 12 (1) $\angle DPA = \angle BPC$ (共通), $\angle PDA = \angle PBC$ (内接四角形の角の性質)より、△APD ∞△CPB よって、PA: PC = PD: PB PD = xとおく $x^2 + 3x - 40 = 0$, x = -8, 5°C, x > 0 \$ 0, x = 5
 - (2) AD : CB = AP : CP = 4 : (5 + 3)
- (3) $\triangle POD : \triangle DOC = PD : DC = 5 : 3$
- **13** (1) AC: CB = 4:3より、AとBのx座標 の絶対値の比は4:3であり、Bのx座標は負。 よって、B O x座標は-3t
- (2) $A(4t, 16t^2)$ 直線ABの傾きは1だから、

$$\frac{16t^2 - 9t^2}{4t - (-3t)} = 1, \quad \frac{7t^2}{7t} = 1, \quad t = 1$$

(3) A(4, 16) をy = x + k に代入する。

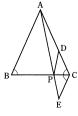
p.47

● 挑戦問題

- 14 (1) △ABEと△BCDにおいて、
 ∠ABE = ∠BCD = 90° ······① 仮定より
 AB² = BE × BC これを書きなおすと、
 AB:BC = BE:AB ここでAB = CD だから、AB:BC = BE:CD ···②
 ①、②より、2組の辺の比が等しく、その間の角が等しいので、△ABE ∞△BCDよって、∠BAE = ∠CBD ······③
 一方、∠ABF + ∠CBD = 90° ······④
 ③、④より、∠ABF + ∠BAE = 90°
 △ABF の外角より、
 - ∠BFE = ∠ABF + ∠BAE = 90°
 (2) △AFG と△DFC において,
 ∠FAG = ∠FDC = 90° ∠ADF ······①
 △ABF ∞ △DAF より, AF: DF = AB:
 DA ·····② △AGE ∞ △DCB より, AG:
 DC = GE: CB ······③
 ②と③で、長方形のたてと横の辺の比より,
 AB: DA = GE: CB だから, AF: DF =
 AG: DC ······④
 ①、④より、2組の辺の比が等しく、その間の角が等しいので、△AFG ∞ △DFC
 よって、∠AFG = ∠DFC だから,
 ∠GFC = ∠GFD + ∠DFC
 = ∠GFD + ∠AFG = ∠AFD = 90°
- 15 $\frac{3}{4}a$
- 16 (1) △ACH と△CBH において、 ∠AHC = ∠CHB = 90°······① 直径 AB に対する円周角より∠ACB = 90°だから、 ∠ACH = ∠CBH = 90° - ∠HCB ····② ①、②より、2組の角がそれぞれ等しいので、△ACH ∞△CBH
 - (2) $2\sqrt{2cm}$
- **17** (1) 3倍 (2) $\frac{16}{9}$ 倍, DE = 3cm

解説

15 点DをBCについて折り返した点をEとすると、AP+PDが最小となるのは、AEとBCの交点がPのときである。このとき、 $\angle ABC = \angle ACB = \angle BCE$ より、錯角が等しいので、 $AB/\!\!\!/EC$ よって、 $\triangle ABP$



- ∞ △ECP \ddagger \emptyset , BP : CP = AB : EC = (2+1): 1=3 : 1, BP = $\frac{3}{3+1}$ BC = $\frac{3}{4}$ a
- **16** (2) \triangle ACH \triangle CBH \updownarrow \emptyset , AH : CH = CH : BH, CH² = AH \times BH = 8 \times 1 = 8, CH = $\sqrt{8}$ = 2 $\sqrt{2}$ (cm)
- 17 (1) DE = acm とする。△AED ∞△BEC より, DE : CE = AD : BC, a : CE = 6 : 12, CE = 2a △ABE ∞△DCE より, BE : CE = AB : DC, BE : 2a = 9 : 6, BE = 3a よって、3倍。
 - (2) $\widehat{AD} = \widehat{DC}$ より $\angle ABE = \angle DBC$, \widehat{BC} に対する円周角より $\angle BAE = \angle BDC$ よって、 $\triangle ABE \otimes \triangle DBC$ が成り立つから、 $AB: DB = BE: BC, 9: (3a+a) = 3a: 12, 12a^2 = 12 \times 9, a > 0$ より a = 3 (cm)

相似(2)

p.48~49

● 練習問題

- 1 (1) x = 15
- (2) x = 15
- **2** (1) $x = \frac{24}{5}$
- (2) x = 8
- **3** (1) 5:8
- (2) 25: 79
- **4** (1) 1:1
- (2) 2:5
- 5 (1) 1:2 (2) 1:36 Cを通りADに平行な直線をひき、BAの 研長との交点をEとすると、BA:AE -
- **B** Cを通りAD に平行な直線をひき、BAの 延長との交点をEとすると、BA:AE = BD: DC…① また、∠AEC = ∠BAD(同 位角)、∠ACE = ∠DAC(錯角)で、仮定よ り∠BAD = ∠DACだから、∠AEC = ∠ ACE よって、△ACEは二等辺三角形だか ら、AE = AC…② ①と②より、AB: AC = BD: DC
- **7** (1) 2:3
- (2) 2:1
- **8** (1) 1:2
- $(2) \quad 6cm^3$

解説

- 1 (1) 12 : 9 = (12 + 8) : x, x = 15
 - (2) 5: (x-5)=6: 12, x=15
- **2** (1) 5: 4 = 6: x, $x = \frac{24}{5}$
 - (2) 9:6=(20-x):x, 9x=6(20-x), x=8

AF : FC = AE : CB = 5 : 8

(2) AE : AD = 5 : 8, AF : AC = 5 : (5+8)

$$= 5$$
: 13 \sharp \mathfrak{h} , $\triangle AFE = \frac{5}{8} \triangle AFD = \frac{5}{8} \times$